EDI VERIS™ offers the following five different stimulators that can be used based upon your needs:

1) EMS IV
2) FMS IV
3) Fresnel Ganzfeld
4) Silver Bullet Ganzfeld
5) LCD Display

EMS IV

- High resolution color microdisplay (1280X1024, response time ~40µs)
- Single knob spherical patient refractive correction range & >20 diopters.
- When aligned with the eye camera, the refraction does not affect the size of the retinal stimulus (very important when the data are compared with normal references).
- The IR eye camera permits monitoring of fixation stability throughout data collection. It does not allow monitoring the patient’s point of fixation.

The EMS IV is an integrated eye monitoring, refractor, and stimulus display system provides a less expensive alternative to the fundus monitoring FMS IV stimulator. It uses the same fast-switching, high-luminance, color stimulus display and refractor/eye camera functions as the FMS IV but does not have infrared fundus imaging capabilities like the FMS IV.

For more details and quote, please call +1 (650) 631-0120
FMS IV

- Advanced Fixation Monitoring System
- High-Resolution Color Stimulator with Magnification-Compensating Retractor

The FMS IV includes all the features of the EMS IV plus a built-in IR fundus camera for accurate monitoring of the patient's point of fixation. This is particularly important when testing patients with low visual acuity (e.g., patients with AMD) and patients suspected of malingering.

Along with providing the ultimate control of fixation, the FMS IV, refractor, and stimulus display system provide better alignment, focus, and high-resolution, high-intensity stimulus delivery for multifocal visual electrophysiological testing.

For more details and quote, please call +1 (650) 631-0120
FG1 Fresnel Ganzfeld Stimulator

The FG 1 is of an innovative design. It is used for all Ganzfeld tests including the EOG and can be used hand held in the Operating Room. Its lightweight construction, built-in infra-red video display, and stimulus trigger make it an ideal handheld stimulator for the reclining or supine subject. An optional adjustable headrest with a quick-release mounting makes it equally convenient to use with an articulating instrument arm. With its 10" opening, it permits binocular stimulation for all tests including the EOG. While the bowl is only 4" deep, the Fresnel optics place the fixation targets a reading distance. The FG1 incorporates an IR camera for patient monitoring as well as a small LCD display on its backside. While it is relatively flat, the Fresnel optics place the fixation targets at reading distance. The flat design with a sealed Fresnel lens reduces transmission of airborne pathogens that can be trapped in the spherical cavities of conventional Ganzfelds and provides for easy cleaning.

It includes is a calibrator, also fully integrated with your VERIS™ software, for simple and accurate photometric background and stimulus calibration.

For more details and quote, please call +1 (650) 631-0120
"Silver Bullet" Ganzfeld Stimulator

EDI also offers a Ganzfeld with a large bowl, the GV3. It is used mounted on an articulating arm for easy wheelchair access. Specifications:

- Flash intensity (maximum > 30 cd•sec/m² at 4 msec duration).
- Background luminance (maximum > 1000 cd/m²).
- Programmable flash duration.
- 3 fixation LEDs for EOG recording.

Both Ganzfeld versions use red, green, blue and amber LEDs for flashes and background illumination.

For more details and quote, please call +1 (650) 631-0120
The LCD panels are often used for visual electrophysiology. They have the disadvantage of non-uniformity in brightness and asymmetric ON/OFF switching. EDI only recommends this technology when a large screen is required such as with EDI’s Sweep VEP protocols. EDI counteracts the deficiencies of the LCDs as follows:

- For multifocal tests, EDI provides a Fresnel lens (Eye Camera/Refractor System) to compensate for the non-uniformities of LCD panels.

- For stimulation with LCD panels, VERIS™ includes PERG protocols with m-sequence stimulation to minimize the effects of artifacts due to asymmetry.